Resilience Structural Design Pattern Modeling

Mohit Kumar, and Christian Engelmann – Oak Ridge National Laboratory

Motivation

Resilience in extreme-scale high-performance computing (HPC) systems is a critical challenge.

- High component counts
- Lower component reliability
- Hardware complexity
- Software complexity

Resilience Design Patterns

Design patterns describe generalizable solutions to recurring problems. Resilience design patterns address the issues of dealing with faults, errors, and failures in extreme-scale HPC.

Terminology and Metrics

- Fault is a defect in a system that has the potential to cause an error.
- A fault becomes an error when it is activated and results in an illegal system state.
- A failure occurs when an error reaches the service interface of a system, resulting in system inconsistent behavior with its specification.

• Reliability is the probability of a system not experiencing a fault, error, or failure during operation.

$$R(t) = 1 - F(t) = \int_{t}^{\infty} f(t)d(t)$$

 $> \lambda$ is the frequency at which a system experiences fault, error or failure.

$$MTTF = \int_0^\infty R(t)d(t) = 1/\lambda$$

 $> \lambda$ displays the "bathtub curve" which results in a normalized exponential probability density function (PDF).

$$R(t) = e^{-\lambda t}$$

N systems depending on each other exhibit serial reliability and N systems redundant to each other have parallel reliability.

$$R(t)_{s} = \prod_{n=1}^{N} R_{n}(t), R(t)_{p} = 1 - \prod_{n=1}^{N} (1 - Rn(t))$$

 Availability is the proportion of time a system provides a correct service, with planned uptime (PU) t_{pu}, scheduled downtime (SD) t_{sd} and unscheduled downtime (UD) t_{ud}.

$$A = \frac{t_{pu}}{t_{pu} + tsd + tud} = \frac{MTT}{MTTF + MTTR} = \frac{MTT}{MTBF}$$

Serial and parallel availability can be defined as:

$$A_s = \prod_{n=1}^{N} A_n, Ap = 1 - \prod_{n=1}^{N} (1 - An)$$

• Performance is the time required to successfully execute a task, including PU, SD and UD.

Rollback Resilience Design Pattern

 \geq

• A derivative of the Checkpoint Recovery architectural pattern which supports resilient operation by restoring the system to a known correct state in the event of an error or failure.

Performance

$$\begin{split} T &= M e^{(Tl+Tr)/M} \left(e^{(\tau+Ts)/M} - 1 \right) \frac{T_E}{T} \\ \tau &= \sqrt{2MTs} \left[1 + \frac{1}{3} \left(\frac{T_s}{2M} \right)^{1/2} + \frac{1}{9} \left(\frac{T_s}{2M} \right) \right]^T - Ts \end{split}$$

N-Modular Resilience Design Pattern

- A derivative of the Redundancy architectural pattern enables the continuous correct operation of a system by applying redundancy to system state and optionally to system resources.
- Parameters
- T_a Time to activate N replicas of the system
- T_i Time to replicate the input to the N replicas

Resilience Structural Design Pattern Modeling

Mohit Kumar and Christian Engelmann – Oak Ridge National Laboratory

- T_e Time to execute system progress in the N replicas
- T_o Time to compare the outputs from the N replicas
- T_r Time to remove, replace, or discount the affected replica(s)
- Performance
 - $T = \alpha TE + (1 \alpha)NT_E + P(t_i + to) + TR$

N-modular Redundancy pattern flowchart and state diagram

Rollback and N-modular Redundancy pattern performance, reliability, and availability

Multi-level Rollback

- A new approach for offering a separate resilience strategy for computation offloaded to a general-purpose computing graphics processing unit (GPGPU) accelerator.
- Rollback pattern for the application (level I = 0), Rollback pattern for the offloaded computation (level I = 1)
- \bullet 80% of the task's execution time T_{E} offloaded to a GPGPU.
- \bullet Ts and Tl+r are of 1 second.
- Performance

 $T = Tl_{=0} + Tl_{=1}$

Rollback and N-modular Redundancy

- GPGPU errors and failures are detected and potentially corrected using redundancy.
- GPGPU redundancy N is 1, 2, or 3 and in time (α = 1).
- \bullet Time to replicate the input T_i and to compare the outputs T_o are 0.
- $\mbox{ * Time to reboot a GPGPU and use it again for redundancy <math display="inline">T_r$ and the MTTR R are 1 minute.

Performance

pattern performance, reliability, and availability

Future Work

- Provide models for other structural resilience design patterns.
- Develop a command line tool to generate plots for different parameters of specific design patterns model.
 Focus on models for power consumption and energy.

ACKNOWLEDGEMENTS

Work supported by the Early Career Program of the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing.